
Analysis of Gene Essentiality from TnSeq Data Using Transit1

Thomas R. Ioerger
Department of Computer Science

Texas A&M University
ioerger@cs.tamu.edu

2

December 22, 20203

Abstract4

TnSeq, or sequencing of transposon-insertion libraries, has proven to be a valuable method for5

probing the functions of genes in a wide range of bacteria. TnSeq has found many applications for6

studying genes involved in core functions (such as cell division or metabolism), stress response,7

virulence, etc., as well as to identify potential drug targets. Two of the most commonly used8

transposons in practice are Himar1, which inserts randomly at TA dinucleotides, and Tn5,9

which can insert more broadly throughout the genome. These insertions cause putative gene-10

function disruption, and clones with insertions in genes that cannot tolerate disruption (in a11

given condition) are eliminated from the population. Deep-sequencing can be used to efficiently12

profile the surviving members, with insertions in genes that can be inferred to be non-essential.13

Data from TnSeq experiments (i.e. transposon insertion counts at specific genomic locations) is14

inherently noisy, making rigorous statistical analysis (e.g. quantifying significance) challenging.15

In this paper, we describe Transit, a Python-based software package for analyzing TnSeq data16

that combines a variety of data processing tools, quality assessment methods, and analytical17

algorithms for identifying essential (or conditionally essential) genes.18
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1 Introduction20

TnSeq, or sequencing of transposon-insertion libraries, has proven to be a valuable method for21

probing the functions of genes in bacteria [1–3]. Libraries are generated by random insertion of22

a transposon throughout a genome, creating a pool of mutants. DNA from bacteria grown in a23

particular condition is extracted, the junctions between transposon and adjacent genomic region24

are amplified by PCR, the samples are sequenced by high-throughput sequencing, and insertions25

at individual sites are counted. The pattern of insertion counts can be used to infer the difference26

between essential (ES) and non-essential (NE) regions; regions that tolerate insertions are generally27

considered non-essential, while regions lacking insertions are taken as evidence of essentiality. In28

addition to the binary distinction of essential vs non-essential, some genes can exhibit a partial29

reduction of insertion counts, which can be interpreted as a growth defect (GD) caused by disruption30

of the gene, and indeed quantitative changes in insertion counts in has been shown to reflect changes31

in fitness E. coli [1]. There are several variations of sample preparation protocols currently in use,32

going by names such as TraDIS [4], HITS [5], and InSeq [6], which differ based on the transposon33

used, method of DNA fragmentation, and transposon junction amplification. More recently, Barseq34

[7] has been introduced to exploit barcoding to afford a very high level of multiplexing on next-gen35

sequencers, allowing the efficient analysis of hundreds of samples in parallel.36
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TnSeq has found many applications in many different bacteria, including E. coli, Mycobacteria,37

Pseudomonas, Vibrio, Haemophilus, Salmonella, etc., to study genes invovled in metabolism, stress38

response, virulence, etc. For example, TnSeq has been used to study genes required for metabo-39

lizing/utilizing specific nutrients such as cholesterol [24] or iron [33], tolerance of stress conditions40

[37, 38], genetic interactions with knocked-out genes in libraries made from null mutants [39–41],41

and virulence in animal models [4, 5, 9, 42, 43]. TnSeq gives a very different read-out on gene func-42

tion than RNA-seq (transcriptomics), as essentiality of a gene is orthogonal to (i.e. not necessarily43

correlated with) the level of expression [8]; one can change without the other. Gene essentiality is44

especially useful for drug discovery efforts, such as interpreting mechanisms of resistance through45

mutations found in resistant mutants and identifying vulnerable targets and pathways that are46

critical for survival in vivo (during infection) [9]. Databases of essential genes, such as DEG [10],47

have been assembled from curated collections of published results of TnSeq analyses, along with48

inferences of essential genes extended to other species by homology.49

Two of the most commonly used transposons in practice are Himar1 [11, 12] and Tn5 [4, 13].50

While Himar1, a member of the mariner family, is restricted to inserting at TA dinucleotides [14],51

Tn5 can insert effectively at any site in the genome, which has consequences for statistical analysis.52

The magnitude of counts at an individual site is highly dependent on the library, as insertion into53

the chromosome is a stochastic process, which is a major factor contributing to variability. Although54

the magnitude of insertion counts can vary significantly between adjacent TA sites in non-essential55

regions, no strong sequence-dependent bias has yet been found for insertion of various transposons.56

For Himar1, there is an apparent non-permissiveness of TA sites with a G at flanking positions57

+/-2 bp, with G or C at +/-3 [44], and also a general preference for insertions in more bendable58

regions of the DNA [45]). Similarly, only a generalized sequence preference has been identified for59

Tn5, but it is insufficient to make insertion locations predictable [46]. Thus insertion counts are60

usually treated as a random variable, and analysis methods rely on averaging over multiple TA61

sites in a gene to make a statistical assessment of essentiality. Even a GC-rich organism like M.62

tuberculosis has 3 or more TA sites for most genes (median is 13 TA sites; only 2.7% of genes have63

less than 3 TA sites); analysis of genes with only 1-2 TA sites is typically not reliable (analysis64

of short genes becomes highly dependent on the degree of saturation), and of course genes with65

0 TA sites are unanalyzable by TnSeq. However, intergenic regions and ncRNAs are often short66

enough to have only 0-2 TA sites, and are difficult to anlayze using TnSeq. Many of the analytical67

methods for Himar1 can be extended to Tn5 data, provided that the saturation is high enough and68

the assuming the locations and magnitudes of insertions can effectively be treated as random [2].69

It is important to note that essential genes, which typically lack insertions throughout the body70

of the ORF, have often been observed to tolerate insertions at the N- and C-termini, as well as in71

linkers between domains, and can even contain non-essential domains, which also pose challenges72

for rigorous identification of essentials. Some studies have observed large-scale chromosomal73

biases, where mean insertion counts exhibit a trend based on position on the chromosome, such as74

a gradation based on distance between the origin and termination of replication. Adjustments for75

such biases can be made through methods such as the LOESS correction [47], which equalizes the76

smoothed mean across the whole genome.77

Data from TnSeq experiments (i.e. insertion counts) is inherently noisy, making rigorous statis-78

tical analysis challenging. Variability can come from a variety of sources, including representation79

(abundance) in the library, stochastic differences between identically-treated samples (plates, cul-80

tures, amimals), and the sequencing process. Reducing raw counts to template counts using bar-81

codes can help ameliorate PCR jackpotting [15]. Loss of diversity (especially in animal infections)82

and amplification of fitness differences due to differences in growth time (generations) can also lead83

to significant artifacts such as skewing of read-count distributions [16]. Larger genes with more84
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TA sites ease this because the impact of isolated deviations (e.g. missing or outlier counts) can be85

mitgated by averaging over multiple observations. Conversely, higher noise and lower saturation86

can make statistical calls for smaller genes uncertain. Hence, normalization and rigorous statis-87

tical analysis are critical to identifying significant genes (e.g. essential or conditionally essential)88

Also, collection of multiple replicates (2-3 replicates per sample is recommended) is important for89

increasing statistical certainty through increasing the number of observations per gene. (Biological90

replicates, i.e. samples from different plates or animals, are more important than technical repli-91

cates, i.e. resequencing, for giving a fair picture of stochastic variability of insertion counts, which92

is critical assessing statistical confidence in observed differences.) Several software packages are93

available for analysis of TnSeq data, each based on different theoretical framework: ESSENTIALS94

[17], TnSeq-Explorer [18], TraDIS-Toolkit [19], TnSeqDiff [20] fitness ratios [21], ARTIST [22], and95

others.96

In this paper, we describe Transit [23], a Python-based software package for analyzing TnSeq97

data. Transit combines implementations of a range of previously published statistical analysis98

methods. Transit was originally designed for statistical analysis of Himar1 TnSeq datasets (in99

which insertions are assumed to be restricted to TA sites), though some of the methods have100

been adapted for Tn5 data (for which the typical lower saturation causes challenges). Transit101

has a pre-processor (TPP) for extracting insertion counts from raw sequence (.fastq) files that102

encodes best practices accumulated from experience in multiple labs over the years. Transit also103

incorporates tools for quality control (QC analysis) for assessing the quality of datasets. Transit104

has a graphical user interface (GUI) to make it easy for users to to perform most tasks, though105

this review will focus on running tasks from the command line. The methods are also accessible as106

a Python library for programmers to call in their own scripts (the source code can be downloaded107

from Github, https://github.com/mad-lab/transit). Further details can be found in the online108

documentation, https://transit.readthedocs.io/en/latest/.109

The analytical tools in Transit are oriented around addressing three types of questions:110

1. identifying essential genes in a single (e.g. reference) condition111

2. comparative evaluation of conditional essentiality between two conditions112

3. analysis of genes showing variability across multiple conditions113

Each of these has different use cases. A common case of single-condition analysis might be assessing114

essential genes and pathways in a new bacterial species. A common case of pairwise analysis might115

be comparing essentiality in a stress condition, such as starvation, iron limitation, low pH, hypoxia,116

antibiotic exposure, or growth in an animal model, compared to a reference condition, such as117

growth on rich medium. However, recently, more complex TnSeq experiments are being conducted118

involving multiple experimental variables/treatments, such as varying antibiotic concentrations,119

varying durations (number of days or weeks in culture or in vivo), comparison of survival in different120

animal breeds/species/genotypes, or supplementation with various nutrients, making tools for task121

multi-condition analysis necessary to explore/characterize patterns of response over larger sets of122

experimental conditions. This paper describes how to do these analyses using Transit, and includes123

comments about the impact of (and guidelines on) data quality, file formats, and other practical124

information.125
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2 Materials126

Transit is designed to run on Linux, Macs, and Windows machines. Transit is written in python3,127

and requires wxPython4, R, and many other packages as dependencies. Transit can be installed128

in two ways: 1) via ‘pip3 install’, which will downloaded and install the compiled code from129

the repository on PyPi along with all dependencies (so that it can be run directly from the130

command line as ‘transit’), or 2) by cloning the source code from GitHub, and then manu-131

ally installing the required packages (see Installation Instructions in the online documentation,132

https://transit.readthedocs.io/en/latest/). The current version is 3.1.0 as of this writing;133

for future changes, see the online documentation. Note that BWA must be installed for TPP, and134

some of the more advanced functions (like ZINB) require R to be installed, along with some specific135

packages.136

In the sections below, we will give examples based on a study of gene requirements for growth137

of M. tuberculosis H37Rv on cholesterol compared to glycerol [24]. In this study, there are 5 TnSeq138

datasets collection, 2 for glycerol and 3 for cholestrol. For brevity, we will refer to these wig files139

as G1.wig, G2.wig, C1.wig, C2.wig, and C3.wig.140

If installed from GitHub, running Transit would require command sequences like ‘python3141

$TRANSITDIR/src/transit.py ...’, where $TRANSITDIR is path where Transit is installed.142

However, for simplicity, we will simply use the command ‘transit’ in the examples below.143

Users can get help on most commands (e.g. reminders of arguments and flags) by running144

Transit without any arguments, or with ‘--help’.145

Most of the analyses in Transit generate tab-separated output files as a convention, which can146

be opened as spreadsheets in Excel. Lines prefixed with ‘#’ in the output files are comments.147

All the input and output files for the examples in this chapter can be accessed online at:148

http://orca1.tamu.edu/essentiality/transit/examples/index.html149

3 Methods150

3.1 Pre-Processing (TPP)151

Transit has a pre-processing step called TPP (Transit Pre-Processor) that maps reads from se-152

quencing a Tn library (files in .fastq or .fasta format) into a genome (.fasta format) and tabulates153

insertion counts at TA sites. The counts are output in a file format called ‘.wig’ files, which simply154

have two values on each line - coordinate and insertion counts for each TA site. Wig files have two155

header lines, the second of which indicates the name of the genome sequence that was used as a156

reference (‘variableStep chrom=H37Rv’ indicating H37Rv.fna as the reference sequence, for exam-157

ple). In subsequent analyses, it is critical to use the annotation file corresponding to the genomes158

sequence used in TPP, to ensure consistency of the coordinate system.159

TPP uses BWA [25] (which must be installed separately) to map reads into the genome. Since160

the reads represent junctions between the transposon and chromosome, the first step is identifying161

reads (in read 1) with a prefix matching the terminus of the transposon, and the stripping this162

prefix off to map the genomic suffix. Many protocols introduce random shifts in the location of the163

prefix sequence within the reads, to reduce sequencing problems when all reads begin with the same164

nucleotides. By default, TPP searches for a prefix corresponding to Himar1, but other transposons165

can be accommodated by specifying the search sequence using the ‘-prefix’ flag. Illumina sequencers166

often provide pairs of reads, and while read 2 is not absolutely necessary for mapping reads (i.e.167

optional), Sassetti et al. have shown how to embed random nucleotide barcodes in read 2 that can168

be used by TPP to reduce raw read counts at each TA site to counts of unique DNA templates,169
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which helps reduce noise due to PCR jackpotting effects [15]. Because of the lengths of the prefix170

in read 1 and barcodes (and surrounding constant regions and genomic regions in read 2), it is171

recommended to use a read length of at least 75 bp (i.e. 75x75 bp paired-end sequencing). Various172

flags can be used to adjust the methods and parameters for mapping reads, such as number of173

mismatches allowed or constraints on location of prefix.174

An example of running TPP is as follow:175

> tpp -bwa /home/bwa/bwa-0.7.12/bwa -ref H37Rv.fna -reads1 G1_R1.fastq176

-reads2 G1_R2.fastq -output G1177

The inputs are the sequencing data (fastq files for read 1 and 2) and the reference genome178

sequence (H37Rv.fna, nucleotide fasta). Multiple intermediate files will be generated for the base179

filename given by -output. The primary output file would be the wig file, G1.wig, which contains180

the insertion counts at TA sites.181

TPP can also map reads to genome sequences containing multiple contigs (or replicons), such as182

when an organism contains multiple chromosomes and/or plasmids. Separate reference sequences183

can be provides to TPP as a comma-separated list.184

Another important output file from TPP is the .tn stats file that gets generated. It contains185

important parameters and diagnostics from the run. As a quick check, it is useful to examine the186

saturation (fraction of TA sites with insertions, ideally > 30%) and NZmean (mean over non-zero187

sites, ideally > 10). The .tn stats files also reports the total reads, number of reads mapped, and188

related statistics which can give insight into the degree of attrition and possible reasons for it189

(for example, whether reads lacked the expected prefix, mapped predominantly to a single site, or190

matched known sequences related to the transposon vector or primers).191

3.1.1 Making Combined Wig Files192

When working with a large collection of datasets, it can be cumbersome to have to type multiple193

wig filenames as inputs to subsequent commands. In such cases, it is convenient to make a ‘com-194

bined wig’ file, which combines the counts at the same TA sites from multiple wig files on the same195

line (and appends on the ORF id and gene name from the annotation). To aid in comparing inser-196

tion counts between datasets, the counts are normalized using TTR normalization (by default, see197

below), though other normalization methods (including ’nonorm’ which preserves raw counts) can198

be applied using the -n flag. The “#File:” header lines cocument the datasets that were combined.199

> transit export combined_wig G1.wig,G2.wig,C1.wig,C2.wig,C3.wig H37Rv.prot_table200

glyc_chol_combined_wig.txt # TTR norm is implicit201

202

> transit export combined_wig G1.wig,G2.wig,C1.wig,C2.wig,C3.wig H37Rv.prot_table203

glyc_chol_combined_wig_raw.txt -n nonorm204

A recommended practice is to use the combined wig file for examining and comparing normalized205

insertion counts in a gene or locus that is indicated to be conditionally essential, to confirm whether206

the effect is genuine or perhaps influenced by a few outlier insertion counts.207

The ‘.prot table’ file contains the coordinates and annotations of genes in the genome (see208

Section 3.2.2 below).209

It is often useful to reduce the data in each sample to the mean insertion counts for each gene,210

which can be done with the ’export mean counts’ command:211
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> transit export mean_counts G1.wig,G2.wig,C1.wig,C2.wig,C3.wig H37Rv.prot_table212

glyc_chol_gene_means.txt213

The output file, glyc chol gene means.txt can be opened as a spreadsheet.214

An individual wig file may be normalized itself using the following command,215

> transit normalize <input.wig> <output.wig> -n [method]216

where ‘method’ is TTR, betageom, or several others (see documentation). Normalization can also217

be applied simultaneous to multiple datasets in a combined wig file by adding the ‘-c’ flag before218

the filename.219

3.1.2 Evaluting Quality of TnSeq Data220

To summarize the statistics of multiple samples in a combined wig file, one may use the ‘tnseq stats’221

command (given either a list of individual wig files, or a combined wig file):222

> transit tnseq_stats G1.wig G2.wig C1.wig C2.wig C3.wig -o glyc_chol_tnseq_stats.txt223

or224

> transit tnseq_stats -c glyc_chol_combined_wig_raw.txt -o glyc_chol_tnseq_stats.txt225

The output file is a tab-separated file that can be opened as a spreadsheet. It contains impor-226

tant information, including the saturation, total counts, mean, NZmean, and max count, for each227

dataset, along with several statistics on the read-count distribution (skewness, etc.). While the228

saturation will not change, it is best to run tnseq stats on a combined wig file to which no normal-229

ization has been applied (‘-n nonorm’), since otherwise, the mean counts will be reflect the results230

of TTR normalization. If datasets with especially low saturation (e.g. < 15%) or low NZmean (e.g.231

< 1) are observed, the researcher might consider excluding them from further analyses.232

Users can assess the quality of the TnSeq datasets by generating and examining the tnseq stats233

table mentioned above. The primary metrics are saturation and mean insertion count (specifically,234

NZmean). While there are not rigorous criteria for defining “bad” datasets, rules of thumb I use for235

“good” datasets are: density> 30% (ideally > 50%) and NZmean>10 (ideally >50). In addition,236

I look at MaxReadCount and Skewness as indicators. Typically, MaxReadCount will be in the237

range of a few thousand to tens-of-thousands. If you see individual sites with counts in the range238

of 105 − 106, it might mean you have some positive selection at a site (e.g. biological (fitness239

advantage), or an artifiact due to things like PCR jackpotting), and this can have the effect of240

reducing counts and influencing the distribution at all the other sites. If MaxReadCount<100, that241

is also probably problematic (either not enough reads, or possibly skewing). Also, skewness>30242

often (but not always) signals a problem. The reason it is not easy to boil all these down to a243

simple set of criteria is that some some of the metrics interact with each other.244

A useful tool when evaluating the quality of a collection of TnSeq datasets is to make a cor-245

relation plot of the mean insertion counts (averaged at the gene-level). While, it is difficult to246

state how much correlation there should be between conditions (or even between replicates of the247

same condition), the corrplot can often reveal individual samples which stand out as being far less248

correlated with all the others (which subsequently might be excluded from analyses).249

> transit corrplot glyc_chol_combined.wig.txt glyc_chol_corrplot.png250
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Although saturation and NZmean are the easiest to assess, a more complicated aspect of data251

quailty is the insertion-count distribution. Generally speaking, the number of TA sites with252

low counts are most abundant, and sites with high counts are far less frequent. While it is not253

theoretically guaranteed, well-behaved datasets typically conform closer to a geometric distribution254

(though possibly with some excess dispersion, which could be modeled as a negative binomial). In255

contrast, lower-quality datasets often exhibit a significant skew away from this distribution. Skewed256

datasets are often more dominated by excessively high counts at a few sites, while the counts257

at the vast majority of remaining sites are quite low by comparison. This can cause problems258

with normalization; even though TTR is designed to be robust to a few outliers, it is only linear259

transformation and cannot correct for skew in the data. This can lead to an inflation of apparently260

differentially essential genes (artifacts) when skewed datasets are compared to other conditions.261

The Transit GUI provides plots of the insertion-count distribution, including a QQ-plot (quantile-262

quantile plot) against an ideal geometric, to visually assess the degree of skew. The closer to a263

diagonal, the better. Aside from ‘skewness’ as a metric itself, the tnseq stats table also report the264

Pickand’s tail index [48]. Anecdotal experience suggests that dataset with PTI > 1.0 (and maybe265

even PTI > 0.5) are potentially problematic.266

The causes of skew are (currently) not well understood, though, anecdotally, it often seems to be267

associated with loss of diverity (e.g. in animal-passeged samples) over ’over-selection’ of libraries.268

For example, culturing too long under a stress condition can amplify the effects of even small fitness269

differences.270

What can be done with skewed datasets? One solution is to apply the Beta-Geometric cor-271

rection (BGC) [16]. This is a non-linear normalization procedure that adjusts the insertion-count272

distribution to look more like a conventional geometric distribution. This can be accomplished us-273

ing the ‘-n betageom’ flag to the ‘normalize’ command. BGC normalization dramatically squashes274

down the sites with the highest counts, but if it is applied uniformly to all the samples in a com-275

parison, it often greatly reduces the number of (apparently) significant hits, hopefully getting rid of276

false positives and retaining only a few true positives where the trend of insertions truly supports277

a change in essentiality (fitness difference).278

> transit normalize G1.wig G1 BGC.wig -n betageom279

3.2 Analyses for Single Conditions280

3.2.1 Gumbel Analysis281

Analyses of individual conditions might occur when a new strain is being evaluated in a reference282

condition (rich growth medium, for example), and the goal is to make a preliminary catalog of283

essential genes. There are two principle methods in Transit: Gumbal analysis, and a Hidden284

Markov Model (HMM). Gumbel analysis focuses on genes with statistically significant gaps, or285

consecutive sequences of TA sites lacking insertions (empty sites, with counts of 0) [26] Since most286

libraries are sub-saturated, empty sites will occur in non-essential regions at random, but long287

sequences of empty sites are statistically unlikely, and genes containing such gaps are taken as288

essential. The Gumbel method uses the Extreme Value Distribution to quantify the certainty, and289

a posterior probability is reported in the output file (with separate thresholds for Essential and290

Non-essential genes, and Uncertain genes in between). An important advantage of this gap-based291

approach is that it is tolerant of insertions which sometimes occur at the N- and C-termini of ORFs.292

A disadvantage is that it works less well with less-saturated libraries (< 40%), and can yield many293

more Uncertain calls, especially for shorter genes (with < 10 TA sites). Note that the magnitude294

of insertion counts (and hence normalization) do not matter for Gumbel analysis.295
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> transit gumbel G1.wig,G2.wig ref.prot_table gumbel_H37Rv_glycerol.txt296

Gumbel can be run on multiple replicates. If multiple replicates are available, they can be297

provided to Gumbel via a comma-separated list, as shown above, and the data will be merged.298

The output file will contains values for each gene, such as number of TA sites, number of sites with299

insertion, longest run of sites without insertion, and finally a posterior probability (‘zbar’) and call300

(ES=essential, NE=non-ess, U=uncertain, S=too short to analyze). This command also has flags301

for explicitly trimming (ignoring) TA sites in termini of genes, etc.302

A typical expectation is that around 10-15% of genes will be essential for growth in vitro in most303

bacterial genomes, as has been observed across many organisms [10], though of course it depends304

on size of genome and growth condition.305

3.2.2 Prot Tables306

An important input file to Gumbel, like many other methods in Transit, is a “prot table,” which con-307

tains the annotation of the genome (including start and stop coordinates of genes). The prot table308

format is derived from an old format that could be downloaded from GenBank years ago. It is309

a tab-separated file with the following fields for each gene: function/description, start coord, end310

coord, strain (‘+’ or ‘-’), gene length (in amino acids; unused), 3 unused fields, gene name, and311

ORF id. More recently, the gff (or gff3) format is being used for genome annotations. Transit has a312

method to convert a gff file into a prot table. However, there is greater flexibility in the gff format313

(especially, varying use of keywords), which is difficult to anticipate, so if the Transit command314

does not work, users might have to write their own script to convert their gff file to a prot table.315

> transit convert gff_to_prot_table <ref.gff> <ref.prot_table>316

See Notes on including other types of genes in prot tables. Note that one can add other types317

of genes to a prot table, such as tRNAs, rRNAs, and ncRNAs. All that is required it to include318

lines with the expected format, including start and end coordinates and strand. Furthermore, the319

same approach can be used to represent other types of loci, such as operons (spanning multiple320

genes) or intergenic regions, to be analyzed for essentiality. However, note that most intergenic321

regions and ncRNAs are relatively small compared to typical protein-coding regions, and hence322

they often have only a few (if any) TA sites, making essentiality analysis highly uncertain (except323

for the most highly saturated libraries [44]).324

3.2.3 Hidden Markov Model325

The HMM can also be used to assess TnSeq data in a single condition. It works a different prinicple326

- using a probabilistic model to estimate the state at each TA based on the counts and consistency327

with adjacent sites [27]. This allows the HMM to smooth over individual outlier values (such as an328

isolated insertion in any otherwise empty region, or empty sites scattered among insertion in a non-329

essential region) and make a call for a region/gene that integrates information over multiple sites.330

The important difference from Gumbel analysis is that the HMM takes into account the magnitudes331

of insertion counts, which can also carry information about the growth requirement (or fitness332

effect) of a gene. This allows the HMM to make finer distinctions, utilizing 4 states for individual333

sites: ES (essental), GD (growth-defect), NE (non-essential), and GA (growth-advantaged). One334

might see a GD call for a gene whose disruption (by the transposon) impairs growth, so counts335

are suppressed (compared to the global average, but not all the way to 0), while a gene might be336

called GA if transposon insertions actually confer a growth advantage, resulting in inflated counts337
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[21]. The gene-level calls are made based on the majority call among the TA sites within each338

gene. The HMM automatically tunes its internal parameters (e.g. transition probabilities) to the339

characterisitics of the input datasets (saturation and mean insertion counts), and can work over a340

broad range of saturation levels (as low as 20%, [27]).341

> transit hmm G1.wig,G2.wig H37Rv.prot_table hmm_H37Rv_glycerol.txt342

The HMM command has flags for normalization (-n) and also how to handle merging of repli-343

cates (-r), though defaults are usually fine. There are actually two output files generated by the344

HMM, one named on the command line, which will contain the analysis (e.g. state probabilities345

and call) at each individual TA site, and another, hmm H37Rv glycerol genes.txt (‘genes’ added346

as suffix to filename), which contains the call for each gene. There is no “probability” associated347

with the call for each gene. It is important to keep in mind that the call for a given gene can be348

influenced by insertions in the adjacent region, which is part of the design of HMMs.349

The ’-l’ flag may be used to apply a LOESS correction to adjust for large-scale variations350

in insertion counts across the genome. Because the HMM takes the magnitudes of insertions351

into account, it can be affected by large-scale varations in insertion counts across the genome. In352

the GUI, a plot of the smoothed mean insertion count can be generated. If there are noticable353

differences, the local deviations from the global mean can be subtracted out using the LOESS354

correction [17] (‘-l’ flag for the hmm command). While this is typically not necessary for Tn355

libraries in M. tuberculosis, chromosomal biases can be more severe in faster-replicating species,356

like Vibrio cholera [3] and E. coli [49].357

Because essential and growth-defect regions are close (both have suppressed counts), the dif-358

ference in call by the HMM (ES vs GD) can be affected by noise, so we often combine the two359

categories. Typically, 15-20% of genes in a bacterial genome are called by the HMM as ES or GD,360

suggesting they are either absolutely required (ES) or contribute to fitness (GD) in the growth361

condition evaluated.362

3.3 Pairwise Comparisons: Resampling363

Comparisons between two conditions can be used to identify conditionally-essential genes. In364

addition to binary cases where an essential becomes non-essential or vice versa, we also include365

genes with quantitative changes in insertion counts, reflecting apparent fitness changes for mutants366

(for example, genes in which the mean insertion count decreases by 2-fold, though not going all367

the way to 0). The primary tool in Transit used for pairwise comparisons is “resampling.” It is368

equivalent to a permutation test on the difference of the mean counts between the two conditions369

for each gene. Of course, because of stochasticity, almost every gene will exhibit some difference in370

mean insertion counts between any pair of conditions. What matters is whether the difference is371

statistically significant.372

Resampling is a frequentist approach that compares the observed differences of mean insertion373

counts to a null distribution to determine whether the difference is larger than would be expected374

by chance (given the same counts but without knowledge of the condition). First, the normalized375

insertion counts are pooled over all TA sites and replicates for both conditions. Then a null376

distribution is created by repeatedly drawing random two samples (of the same size as the original377

number of observations) from the pooled counts and calculating the difference of means 10,000378

times. From this a two-tailed p-value is derived for the observed difference, and the p-values379

are adjusted post-hoc for multiple testing via the Benjamini-Hochberg correction [50] to limit the380

overall false discovery rate (FDR) to 5%.381
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This comparative approach to identifying conditionally essential genes is preferred over simply382

combining the results of individual analyses of each condition (e.g. Gumbel) and selecting genes383

that are called Essential in one condition but not the other, because the results of that approach384

could be influenced by which genes fall just above or below the significance cutoff. Resampling385

is a direct comparison that looks at differences in insertion counts. The resampling procedure is386

designed to be (somewhat) robust to noise (e.g. outliers, high variance among counts), and is387

appropriately less sensitive for smaller genes and more sensitive with more replicates.388

Normalization is critically important for resampling. If the individual datasets are not properly389

normalized, it can lead to the appearance of an artifically inflated number of conditional essentials390

(i.e. false positives, artifacts). The default normalization used in Transit is called TTR (Trimmed391

Total Read-count). For each dataset, the total insertions over all TA sites is tabulated, after392

removing the top and bottom 1% of sites (to reduce the influence of outliers). The sites are393

divided by this total, and then scaled-up so that the mean insertion count over the whole genome394

is 100. While the calculation is simple, it puts counts from different datasets on a comparable395

basis. Furthermore, it maintains a balance so that counts from less-saturated datasets are inflated396

proportionally, so that the mean insertion for most genes (averaged over multiple TA sites) stays397

about the same on average. This objective is important for the assumptions of resampling (see398

explanation in [23]). A way to verify that TTR normalization is doing the right thing is to make a399

scatter plot of the mean insertion counts for each gene between any two datasets; the data should400

scatter along the X=Y diagonal. Individual points can deviate from this line due to: experimental401

noise, sampling error for small genes with few TA sites, or biological differences (if the datasets402

represent distinct experimental conditions). But if there is a systematic deviation away from the403

X=Y line in this scatter plot (due to improper normalization), it would likely produce an excess of404

conditional essentials detected by resampling.405

Resampling can be run on 2 sets of wig files (comma-separated) as follows:406

> transit resampling G1.wig,G2.wig C1.wig,C2.wig,C3.wig H37Rv.prot_table407

resampling_glyc_chol.txt -a408

The full list of options for the resampling command is:409

> transit resampling410

usage:411

transit resampling <comma-separated .wig control files> <comma-separated .wig experimental files>412

<annotation .prot_table or GFF3> <output file> [Optional Arguments]413

or414

transit resampling -c <combined_wig> <samples_metadata> <ctrl condition name> <exp condition name>415

<annotation .prot_table> <output file> [Optional Arguments]416

NB: The ctrl and exp condition names should match Condition names in samples_metadata file.417

418

Optional Arguments:419

-s <int> := Number of samples. Default: -s 10000420

-n <string> := Normalization method. (Default: -n TTR)421

-h := Output histogram of the permutations for each gene. (Default: Turned Off)422

-a := Perform adaptive resampling. (Default: Turned Off)423

-ez := Exclude rows with zero across conditions. (Default: Turned Off)424

-PC <float> := Pseudocounts used in calculating LFC. (default: 1)425

-l := Perform LOESS Correction (Default: Turned Off)426

-iN <int> := Ignore TAs occuring within given percent (as int) of the N terminus. (Def: 0)427

-iC <int> := Ignore TAs occuring within given percent (as int) of the C terminus. (Def: 0)428

--ctrl_lib := String of letters representing library of control files in order429
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e.g. ’AABB’. Default empty. Letters used must also be used in --exp_lib430

If non-empty, resampling will limit permutations to within-libraries.431

--exp_lib := String of letters representing library of experimental files in order432

where typically the experimental condition represents a treatment and the control condition rep-433

resentation the untreated or reference condition. The samples metadata used with combined wig434

inputs will be explained in the next section.435

The input files are implicitly normalized by TTR (though this can be changed using ‘-n’).436

TA sites near the termini of ORFs can be trimmed using -iC and -iN. For example, to ignore437

insertion in the first or last 5% of an ORF, use ‘-iC 5 -iN 5.’438

I recommend using the ‘-a’ flag to apply the adaptive version of resampling, which is much faster439

and generally outputs p-values close to those obtained by performing all 10,000 samples (within a440

factor of 2-3). It truncates the resampling early for genes when it is clear that they are not going441

to be significant. Almost all significant genes will be still be significant, except for possibly a few442

marginal differences very close to the 0.05 threshold on adjusted p-value.443

If the -h flag is given, histograms of the null distribution from resampling for each gene, along444

with a demarcation for the observed difference in mean insertion count between the conditions,445

will be generated in a sub-directory. These images can be examined to determine whether the null446

distribution for a gene of interest looks appropriately bell-shaped (versus bimodal, for example).447

The output file contains the various statistics on the resampling for each gene and a Padj448

column at the end. Users can open the tab-separated file as a spreadsheet and sort by Padj. The449

conditionally-essential genes are those with Padj < 0.05.450

It is difficult to say what the expectations would be for number of conditional-essentials, since451

it depends on the impact of the biological effects of the selection conditions. In some cases,452

the treatment (e.g. a high-stress condition) might affect the essentiality (and fitness) of hundreds453

of genes. In other cases, biologically weak selection criteria might affect only a few (or perhaps454

no) genes. If the experimenter feels there are too few hits (e.g. compared to their expectations,455

possibly lacking genes known to be in affected pathways), then it might help to collect additional456

replicates, which can increase the sensitivity of detection. If, subjectively, too many significant457

genes are output, it might be a sign of problems with skewing of the data. The user can follow458

the QC guidelines above to possibly identify lower-quality datasets to try excluding, or they might459

consider applying BGC normalization (‘-n betageom’) to the datasets.460

The output also reports the log-fold-change (LFC, base 2) of the mean counts. It can be used461

to sort the genes to identify those showing the greatest increase or decrease in counts (relatively462

less or more essential). However, only genes with Padj < 0.05 should be considered significant.463

But these could be uncertain, and should be ignored if they have a Padj above 0.05. Frequently,464

genes with the largest-magnitude LFC are often smaller genes (with fewer TA sites) or genes with465

very low insertion counts, which are often not statistically significant. Of course, as with other466

frequentist statistical tests, genes with Padj above 0.05 should not be over-interpreted as evidence467

that they are unaffected by the condition.468

Pseudo-counts are used in the calculation of LFCs to help reduce noise. To dampen the ap-469

pearance of high-magnitude LFCs from genes with low insertion counts (which are more susceptible470

to noise), one can increase the pseudo-counts using ‘-PC’. The LFC is calculated using the following471

formula, which uses PC=1 by default, to avoid the result being undefined for genes with means of472

0 in either condition:473

LFC = log2((mean in expt condition + PC)/(mean in ctrl condition + PC))

For example, a gene with a mean count of 1 in the first condition and 4 in the second would474

appear to have a fold-change of 4 and LFC of 2.0 (with PC=0). However, this is typically in475
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the range of noise for TnSeq experiments. Considering that TTR normalization adjusts the mean476

insertion count of each sample to around 100, raising the pseudo-counts to a level of PC=5 would477

reduce this to log2(9/6) = 0.58, masking out differences below this level.478

By loading the resampling output file into the GUI (bottom panel), a volcano plot can be479

generated (via ’Choose Action’), showing a scatter plot of the P-values versus the LFC for each480

gene. Genes the become more essential (in the experimental condition over control) are on the left481

(negative LFC), and significant genes are above the dashed red line (p-value threshold adjusted for482

5% FDR).483

See Notes for analyzing datasets from different libraries using resampling. If the replicates in484

each conditions represent samples from multiple libraries, the sensitivity of resampling can some-485

times be increased by performing separate random draws from the counts for each library and486

computing the difference of the means between conditions summed separately for each library.487

This can help reduce the variance in the difference in the mean insertion count between conditions488

by effectively subtracting out variability due to differences in abundance at each TA site between489

libraries. The transposon library each sample in the two conditions can be specified symbolically490

using a string of characters. For example ‘--exp lib AABB --ctrl lib AB’ would indicate that491

the first 2 experimental samples came from library A and the second two samples from library B;492

there can be different numbers of samples in the control condition, but they should use the same493

codes (in this case, one sample each from library A and B).494

3.3.1 Pathway Analysis495

Typically, the significant genes do not all come from the same pathway, but often represent a496

variety of pathways in which genes experience apparent increases or decreases in fitness. In order497

to get a sense of which pathways might be enriched among the conditionally essential genes, the498

‘pathway enrichment’ command may be used:499

> transit pathway_enrichment <resampling_file> <associations> <pathways>500

<output_file> [-M <FET|GSEA|ONT>] [-PC <int>]501

The 〈associations〉 file lists mappings of ORF ids to pathway ids in a two-column format. Three ex-502

ample systems of funtional categories are: Sanger roles [28] (123 roles), COG categories (Clusters of503

Orthologous Genes, [29], 20 categories), and GO terms (Gene Ontology, http://www.geneontology.org/;504

there are ∼4000 GO terms with at least 1 gene in H37Rv). The corresponding pathway as-505

sociations files for genes in Mtb H37Rv are provided in the Transit data directory ($TRAN-506

SIT/src/pytransit/data/) are: H37Rv sanger roles.dat, H37Rv COG roles.dat, and H37Rv GO terms.txt.507

There may be multiple roles/pathway associations for each gene (listed on separate lines), or508

none (e.g. for hypothetical genes not yet functionally annotated). Note that these files have been509

expanded to include associations of each gene with all parents of each GO term or role (since510

these are hierarchical systems). The 〈pathways〉 file gives the functional descriptions for each511

pathway id/role/GO term (e.g. sanger roles.dat, COG roles.dat, and GO term names.dat in the512

data directory). These will be the same for all organisms.513

There are three alternative methods used to evaluate significance of pathway enrichment:514

• The first is to use Fisher’s exact test, where the p-value based on hypergeometric distribution515

of observed counts of category members among the hits compared the expected number based516

on the whole genome [30]. This is the default method (‘-M FET’). The output file contains a517

list of significant pathways, sorted by adjusted p-value. In addition, the enrichment for each518

gene is reported. Enrichment is defined as the ratio of observed pathway members among519
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the significant genes to the expected number based on the background proportion of category520

members in the overall genome. To mitigate the impact small pathways with only a few521

genes (which might spuriously appear as enriched), pseudocounts of 2 are incorporated in522

the numerator and denominator. This can be modified with the ‘-PC’ flag. However, this523

analysis can be of limited use if the total number of significant (conditionally essential) genes524

is small (< 10).525

• An alternative approach is Gene Set Enrichment Analysis (GSEA, [31]) (using the ‘-M GSEA’526

flag). GSEA takes into account the ranking of all the genes, without regard to a significance527

cutoff. First, the genes are sorted by LFC. Alternatively, they can be ranked by the signed528

log-P-value (SLPV = sign(LFC) ∗ log10(pval)), which effectively ranks the genes by signif-529

icance from largest increase in insertion counts to largest decrease (with insignificant genes530

falling in the middle of the ranking). Then the GSEA algorithm calculates a score reflecting531

the mean rank of a given set of genes and performs a simulation to determine the signifance532

(p-value) by comparing to a null distribution of scores derived from random shuffling of the533

order. The closer the mean rank of a group of genes is to the top of the entire ranked list,534

or the closer to the bottom, the more significant. The potential advantage of GSEA over535

Fisher’s exact test is that all the genes in a pathway can contribute to its enrichment, even if536

only a few (or none) are above the significance cutoff, as long as there is a systematic trend537

of increased or decreased counts shared by many of them.538

• Finally, the Ontologizer method [32] has been implemented and is available via the ‘-M ONT’539

flag. The Ontologizer method acknowledges the hierarchical nature of the Gene Ontology and540

is designed to take advantage of parent-child relationships among GO terms by computing a541

conditional version of Fisher’s exact test for a node conditioned on the genes in its parents.542

This can help focus the analysis on nodes in the GO hierarchy showing the most specific543

enrichment.544

Here are some examples of using these various options.545

# uses Fisher’s exact test by default (with PC=2 as pseudocounts)546

> transit pathway_enrichment resampling_glyc_chol.txt $DATA/H37Rv_sanger_roles.dat547

$DATA/sanger_roles.dat pathways_glyc_chol_Sanger.txt548

549

# can do this with GO terms too550

> transit pathway_enrichment resampling_glyc_chol.txt $DATA/H37Rv_GO_terms.txt551

$DATA/GO_term_names.dat pathways_glyc_chol_GO.txt552

553

# with COG categories554

> transit pathway_enrichment resampling_glyc_chol.txt $DATA/H37Rv_COG_roles.dat555

$DATA/COG_roles.dat pathways_glyc_chol_COG.txt556

557

# can also do GSEA method (on any system of functional categories)558

> transit pathway_enrichment resampling_glyc_chol.txt $DATA/H37Rv_sanger_roles.dat559

$DATA/sanger_roles.dat pathways_Sanger_GSEA.txt -M GSEA560

561

# Ontologizer is a specialized method for GO terms562

> transit pathway_enrichment resampling_glyc_chol.txt $DATA/H37Rv_GO_terms.txt563

$DATA/GO_term_names.dat pathways_Ontologizer.txt -M ONT564

where $DATA refers to the path to the Transit data directory noted above. In this dataset,565

2 COG and 6 Sanger categories related to secondary-metabolite/small-molecule metabolism and566
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lipid metabolism are identified as significant. The most significant GO term identified (among567

26 significant terms, though many overlap) is GO:0008202, ‘steroid metabolic process’ (Padj =568

0.0000089; 15 out of 75 conditionally essential genes from resampling), which is consistent with the569

experiment (growth on cholesterol versus glycerol).570

3.4 Analyses of Multiple Conditions571

Recently, researchers have begun conducting more complex experiments using Tn libraries where a572

library is assessed across a large number of treatment conditions. For example, one might evaluate573

responses (conditional essentiality) to treatment with a panel of different antibiotics, possibly at574

different concentrations. One might assess the library in different stress conditions (heat, cold,575

hypoxia, SDS, nutrient starvation, iron limitation, etc.), or with media supplemented in various576

ways (e.g. multiple sources of carbon, nitrogen, sulfur, or phosphorous). Or one might compare577

survival of a bacterial transposon mutants in animal models with different genetic backgrounds,578

or for different durations of infection, etc. Analysis of such TnSeq datasets goes well beyond579

simple pairwise comparisons between conditions and often requires customized statistical analysis580

to evaluate the effects of the experimental variables. As a first step, Transit has some tools for581

evaluating variability of insertion counts across conditions. The analysis below focus on identifying582

genes that exhibit some statistically signficant differences in insertion counts across the panel of583

conditions. This is a useful starting point to begin to assess effects of the treatments (and similarities584

among them) based on the subsets of genes that respond.585

In this section, we use an example from a study of iron utilization in mycobacteria [33]. The586

data includes 2-3 replicates each of an M. tuberculosis H37Rv transposon library grown in in-vitro587

conditions involving several different vehicles for iron delivery, focusing on various forms of heme588

and mycobactin (6 conditions). The 14 wig files for this example have already been consolidated589

into a combined wig file (iron combined wig4.txt), and a samples metadata file is used to encode590

which samples belong to which condition.591

3.4.1 Genetic Interaction Analysis592

A special case of multi-condition analysis that occurs frequently is when TnSeq libraries in a wild-593

type strain and a mutant strain (e.g. gene-knockout) are compared between two conditions (e.g. a594

stress and a control). Typically, one is looking for genes that are conditionally essentially in the595

stress condition, but one wants to factor out those genes with a similar response in the wild-type596

strain and focus on differences unique to the mutant. There are many variations of this scheme597

which also require a comparison of 4 TnSeq datasets, arranged as 2× 2. Transit has a specialized598

method based on Bayesian analysis [34] to identify significantly interacting genes (that interact599

with the knockout in the context of the stress). An example of how to run this command is as600

follows, which takes 4 groups of comma-separated wig files as input:601

> python3 ../../transit/src/transit.py GI602

<wigs_for_strA_cond1> <wigs_for_strA_cond2> <wigs_for_strB_cond1> <wigs_for_strB_cond2>603

<annotation .prot_table or GFF3> <output file>604

In the output file, significant genes are categoried as ‘aggravating’, ‘alleviating’, or ‘suppressive’605

interactions, depending on whether they exhibit increased or decreased insertion counts in the606

mutant compared to the wild-type in the stress condition.607
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3.4.2 ANOVA608

ANOVA analysis in Transit can be used to identify genes that exhibit significant variability of inser-609

tion counts across multiple conditions. ANOVA is a traditional statistical method for determining610

whether there are differences in observations among several groups. This method can be run in611

Transit using the following command:612

> transit anova --help613

Usage: python3 transit.py anova <combined wig file> <samples_metadata file>614

<annotation .prot_table> <output file> [Optional Arguments]615

Optional Arguments:616

-n <string> := Normalization method. Default: -n TTR617

--include-conditions <cond1,...> := Comma-sep list of conds to use for analysis618

--ignore-conditions <cond1,...> := Comma-sep list of conds to ignore619

-iN <int> := Ignore TAs within given percentage of N terminus. Def: -iN 0620

-iC <int> := Ignore TAs within given percentage of C terminus. Def: -iC 0621

-PC <int> := pseudocounts to use for calculating LFC. Default: -PC 5622

For example,623

> transit anova iron_combined_wig4.txt iron_samples_metadata.txt624

H37Rv.prot_table anova_iron.txt625

The use of a combined wig file makes it easy to work with a large number of datasets in626

this context. The samples metadata file is a spreadsheet (in tab-separated text format) prepared627

by users that contains information about each sample/dataset/wig file. The headers must con-628

tain ‘Id’, ‘Filename’, and ‘Condition’, where Id is a unique name for each sample, Filename is629

the name of its wig file (incorporated in the combined wig file) and Condition is a symbolic630

name used to represent the treatment (typically represented by multiple replicates). The sam-631

ples metadata file can contain additional information as well (e.g. time points, concentrations,632

batches, etc.). During the ANOVA analysis, the (TTR-normalized) insertion counts for the TA633

sites in each gene will be pooled into groups based on the condition labels, before computing634

the F-statistic and p-value. P-values are adjusted post-hoc by the Benjamini-Hochberg method.635

Flags --ignore-conditions and --include-conditions can be used to focus on the analy-636

sis on just a subset of desired conditions (provided as a comma-separated list). For example637

‘--include-conditions HighFeMBT,Hemin,Hemoglobin’ or ‘--ignore-conditions LowFeMBT’.638

The output of ANOVA analysis is a tab-separated spreadsheet which can be sorted by adjusted639

P-value. In this data, 181 genes were found to exhibit significant variability in insertion counts640

among the 6 iron-supplementation conditions. If a gene is determined to be significant by ANOVA,641

it only means that its counts vary in some condition (at least one) relative to the others, but does642

not indicate which one. Like traditional ANOVA analysis, post-hoc analyses must be employed643

to determine which conditions a gene is responding to, such as Tukey’s range-test (or honestly644

significant difference), which is based on pairwise comparisons between conditions [35].645

To facilitate this post-hoc analysis, the ANOVA method in Transit also prints out LFCs for each646

gene in each condition. The LFCs can be used to look for genes that respond to specific conditions,647

e.g. by sorting on these columns to look for genes with the most enrichment or depletion in a given648

condition. Note that LFCs are computed relative to the mean insertion count for a gene across all649

conditions. Thus, there will almost always be some condition(s) with higher counts (representing650

more fitness for the mutant) and other condition(s) with lower counts (where disruption of gene651
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has less fitness, and hence is relatively more essential) than average. Pseudocounts of 5 are used in652

calculating the LFCs (which helps reduce high-magnitude LFCs for genes with low counts, which653

are susceptible to noise), though this can be changed with the -PC flag.654

The LFC columns in the ANOVA output can be colored as a heatmap in the spreadsheet (using655

Excel) to make the patterns of variation among the genes more clear. In addition, the ANOVA656

output file can be used to generate a heatmap (see Figure 1, adapted from [33]) that simultaneously657

clusters the significant genes and the conditions, which is especially useful for shedding light on the658

relationships among the conditions apparent in the data:659

> transit heatmap -anova anova_iron.txt heatmap_iron.png660

Similarly, the anova file can be used as input the corrplot command (with the ‘-anova’ flag suffixed)661

to show the similarities among the condition.662

> transit corrplot anova_iron.txt heatmap_iron.png -anova663

Importantly, the heatmap and corrplot analyses are based only on the significantly varying genes664

(Padj < 0.05, typically only a few hundred) in order to enhance the patterns, since otherwise they665

would be washed out by the rest of the genes in the genome, the majority of which do not exhibit666

significant variation.667

Figure 1: a) Correlation plot among iron-supplementation conditions based on significantly varying
genes according to ANOVA. b) Heatmap of same data showing clustering of genes and conditions.
Blue means more insertions than average (i.e. less essential), and red means less insertions than
average (i.e. more essential).

3.4.3 Zero-Inflated Negative Binomial (ZINB)668

An alternative method for identifying genes exhibiting variability of insertion counts across con-669

ditions is Zero-Inflated Negative Binomial (ZINB) regression, which has recently been added to670
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Transit [36]. One of the limitations of ANOVA analysis is that it assumes the data are Normally671

distributed. However, transposon insertion counts clearly violate this assumption (for several rea-672

sons). The ZINB method is designed to be a better model for insertion count data by: a) represent-673

ing the non-zero counts using a Negative Binomial distribution, and b) representing the saturation674

(TA sites with counts of 0) using a zero component in a mixture model. Thus, when analyzing the675

counts in a gene across multiple conditions, ZINB can detect variations in either the magnitudes in676

the insertion counts or the local level of saturation. This enables ZINB to be a little more sensitive677

than ANOVA, and empirical studies suggest ZINB can detect about 30-50% more significant genes.678

The usage of the ZINB command in Transit is as follows:679

> transit zing --help680

Usage: transit zinb <combined wig file> <samples_metadata file> <annotation .prot_table>681

<output file> [Optional Arguments]682

Optional Arguments:683

-n <string> := Normalization method. Default: -n TTR684

--condition := column name in samples_metadata to use. Default: "Condition"685

--ignore-conditions <cond1,...> := Comma separated list of conditions to ignore686

--include-conditions <cond1,...> := Comma separated list of conditions to include687

-iN <float> := Ignore TAs within given percentage of the N terminus. Def: 5688

-iC <float> := Ignore TAs within given percentage of the C terminus. Def: 5689

-PC <N> := Pseudocounts used in calculating LFCs in output file. Default: -PC 5690

--covars ... := Comma-sep. list of variables (columns in metadata) to use as covariates691

--interactions ... := Comma-sep. list of variables to test for interations692

--gene <ORF id or gene name> := Run method for just one gene and print model output.693

For example,694

> transit zinb iron_combined_wig4.txt iron_samples_metadata.txt695

H37Rv.prot_table zinb_iron.txt696

If there are just two conditions provided, then using ZINB analysis to identify genes with697

variable insertion counts is equivalent to detecting conditional essentiality. Hence ZINB can be698

viewed as an alternative to resampling in this limiting case, and anecdotal testing suggests that699

there is a great deal of overlap. ZINB can sometimes identify additional genes as conditionally700

essential where there is a difference in either local saturation or magnitudes of counts alone, even if701

the overall mean count between conditions is not significantly different, and hence not detected by702

resampling. (see [36] for a more thorough comparison of the differences in significant hits between703

ZINB and resampling on example datasets).704

In the output file for ZINB, multiple columns of information are provided on the mean counts in705

each condition, LFCs (relative to the mean across all conditions), non-zero mean, and saturation.706

For convenience, the –gene flag can be used to run the analysis just on a single gene, and the707

Transit will print out the condition-dependent and condition-independent models, likelihoods, etc.,708

as in this example:709

> transit zinb iron_combined_wig4.txt iron_samples_metadata.txt710

H37Rv.prot_table output.txt --gene glpK711

The significance (p-value) of each gene is determined by a likelihood ratio test (LRT). First, a712

condition-dependent model is generated by fitting independent parameters for each condition (such713

as mean and dispersion of insertion counts in the Negative Binomial, and saturation as the mixing714
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coefficient with the zero component). Then a condition-independent ZINB model is generated by715

fitting a common set of parameters based on the counts pooled across all conditions. Finally, a716

likelihood ratio test is performed to determine whether the increase in likelihood of the condition-717

dependent model is justified, given the increased number of parameters. A p-value is derived718

for each gene using a chi-square distribution, and then the p-values are adjusted post-hoc by the719

Benjamini-Hochberg procedure to control the overall FDR.720

One of the advantages of the ZINB model is that it is implemented in a Generalized Linear721

Model (GLM) framework, which allows incorporation of experimental variables (attributes of the722

conditions) as covariates. One application of this idea is to factor our the effect of an attribute that723

is known to affect the main condition in a way that is not of interest. For example, suppose we724

are interested in identifying genes that exhibit variable responses to different antibiotics. Futher,725

suppose the samples were each cultured for varying amounts of time (e.g. 0, 1, or 2 weeks). It is726

natural to expect that there will variation in insertion counts between samples at different time-727

points, even if they are treated with the same drug. To evaluate the effect of the drug, it is desirable728

to subtract out any systematic effects on the insertion counts due to time (independent of drug). If729

a “Time” column is included in the samples metadata file, and a column with the header “Drug”730

encodes the drug treatment for each sample, then this may be achieved by using the --covars flag,731

as in this hypothetical example:732

> transit zinb combined_wig.txt samples_metadata.txt H37Rv.prot_table733

ZINB_cond_drug_covar_time.txt --condition Drug --covars Time734

If there are multiple covariates, they can by specified using a comma-separated list (i.e. corre-735

sponding to separate columns in the metadata file). The --covars flag could also potentially be736

used to correct for batch effects (where the variation in insertion counts in some samples appear to737

be determined by the batch of the experiment or data collection).738

A similar approach can be used to test for interactions of variables with the main condition.739

For example, suppose we are interested in genes that respond differentially to a panel of drugs.740

Furthermore, suppose TnSeq data was collected for cultures grown on media containing one of741

several carbon sources, e.g. glycerol, glucose, or cholesterol. In order to test whether carbon source742

interacts with drug, ZINB will fit a model based on the cross-product of all combinations of the743

two variables and compare it (using an LRT) to a condition-independent model (where the counts744

are pooled for the main condition). Assuming there is a column with the header “CarbonSource”745

in the samples metadata, the interaction may be tested as in the following hypothetical example:746

> transit zinb combined wig.txt samples metadata.txt H37Rv.prot table747

ZINB cond drug interac carbon.txt748

--condition Drug --interactions CarbonSource749

In the resulting output file, significant genes are those the exhibit some variablility among the750

drug treatments that is dependent on carbon source.751

As with ANOVA, the ZINB output file can be used to make a heatmap showing the clustering752

of the significant genes and the the conditions:753

> transit heatmap -zinb zinb_iron.txt zinb_iron_heatmap.png754

4 Summary755

Transit is designed to be a platform for statistical analysis of TnSeq data, with a focus on analysis756

of Himar1 transposon libraries (where insertions are restricted to TA dinucleotides). Some of the757
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analytical methods can be applied to other transposons, like Tn5, though currently, they don’t758

work as robustly. Although Transit has a graphical interface (GUI), some of the more recent tools759

that have been added can only be invoked at the command line, which has been the focus of this760

paper. The Transit Pre-Processor (TPP) provides a way of processing raw sequencing data files761

and reducing the raw data to TA-site insertion counts in the form of .wig files. The ‘tnseq stats’762

command provides important summary statistics on datasets which is useful for diagnositics (i.e.763

identifying poor-quality datasets that might need to be excluded or re-collected). The analytical764

tools can be divided into 3 major tasks. First, individual datasets from an organism in a single765

(e.g. reference) condition can be used to identify essential genes using methods such as Gumbel766

analysis (gaps) or a Hidden Markov Model. Second, pairs of conditions can be compared to identify767

conditionally essential genes using resampling (a permutation test on mean counts). The recently768

added ability to apply resampling on datasets mapped to different genome sequences has proven769

useful for studying differences in gene essentiality between libraries made from different strains,770

such as clinical isolates. Several methods for pathway enrichment analysis have also been added to771

gain additional insight from functional similarities among conditionally essential genes.772

However, more recent developments in Transit have focused on supplying tools for analyzing773

larger collections of datasets from experiments involving multiple conditions. To keep things man-774

ageble when working with large collections of datasets, many of the tools in Transit have been775

extended to use ‘combined wig’ files and accompanying metadata files that encode relevant infor-776

mation about the different conditions. A starting point for analyzing such complex experiments is777

to identify genes exhibiting statistically significant variability across the conditions, using ANOVA778

or ZINB analysis, and then to begin to cluster and assess genes based on the similarity of their779

patterns of count variations, utilizing correlation plots and heatmaps. ZINB can be used to perform780

more sophisticated analyses through the exploitation of variables relating the different conditions781

as covariates and/or interactions (including capturing the trend or dependence of insertion counts782

on quantitative variables such as time or concentration). Genetic interaction (GI) analysis can be783

used to evaluate experiments where two different experimental variables are evaluated, producing784

a 2x2=4-way comparison of conditions, and test for significant interactions (e.g. suppressive, alle-785

viating, or aggravating), which is especially useful for identifying genes associated with phenotypic786

changes in a knock-out strain compared to a wild-type strain.787

Transit continues to evolve and improve, especially through feedback and suggestions from788

users (send email to ioerger@cs.tamu.edu). In the future, we hope to add new statistical methods789

to support analysis of more complex experiments, improve integration with the GUI, and also790

extend and improve the analyses to TnSeq libraries made with other transposons, especially Tn5.791
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