python tn_hmm.py -f test.wig > output_file.txtWhere "-f" is a flag for the input file, and "test.wig" is an example file name. Below the input file formats are described, followed by description of the input flags available, and finally a description of the output format for the results.
variableStep 60 0 72 0 102 3 188 42 246 0 333 25 360 3 426 0 448 75 471 65 483 24 494 0 504 23 514 1 525 183 534 98 601 0 653 0 670 0 706 0 741 0 784 0 794 0 843 0 989 0 1092 0 1104 0 1267 0 1278 0
Flag | Value | Definition |
---|---|---|
-f | [String] | Path to WIG formatted file containing the reads mapped to the genome. |
-gff | [String] | Optional. Path to GFF3 formatted file containing the coordinates, ID and Name for the genes. Output will contain an indicator line separating gene boundaries. |
-p | [Float String] | Optional. String representation of the parameter values for the model. Specified as comma-separated float values in the interval (0,1). e.g. -p "0.9,0.1,0.01,0.02". If not specified, the parameters will be calculated as described in the publication. |
-a | [Float String] | Optional. String representation of the Transition Probability Matrix. Speciefied as semi-colon separated rows, with comma-separated cells. Values in the interval (0,1). e.g. -a "[0.9,0.05,0.05; 0.05,0.9,0.05; 0.05,0.05,0.9]". If not specified, the values will be calculated as described in the publication. |
-n | [Integer] | Optional. Integer value specifying the number of states. If this flag is specified, the "-a" and "-p" flags must also be specified to define custom values for the parameters and transition probabilities. |
# Tn-HMM # Command Used: python tn-hmm_1.00/hmm_geom.py -f example_reads1.wig # # Mean: 49.27 # Median: 25.00 # pins (obs): 0.379310 # pins (est): 0.687500 # Run length (r): 4 # Self-Transition Prob: -6.0204e-07 # State Emission Parameters (theta): # ES: 0.9900 GD: 0.4239 NE: 0.0279 GA: 0.0056 # State Distributions: # ES: 44.83% GD: 0.00% NE: 55.17% GA: 0.00% 60 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 NE 72 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 NE 102 3 9.90e-07 8.10e-02 2.56e-02 5.48e-03 NE 188 42 9.90e-85 3.70e-11 8.50e-03 4.41e-03 NE 246 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 NE 333 25 9.90e-51 4.36e-07 1.37e-02 4.84e-03 NE 360 3 9.90e-07 8.10e-02 2.56e-02 5.48e-03 NE 426 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 NE 448 75 9.90e-151 4.61e-19 3.35e-03 3.66e-03 NE 471 65 9.90e-131 1.15e-16 4.44e-03 3.87e-03 NE 483 24 9.90e-49 7.57e-07 1.41e-02 4.87e-03 NE 494 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 NE 504 23 9.90e-47 1.31e-06 1.45e-02 4.90e-03 NE 514 1 9.90e-03 2.44e-01 2.71e-02 5.54e-03 NE 525 183 0.00e+00 6.27e-45 1.58e-04 2.00e-03 NE 534 98 9.90e-197 1.43e-24 1.75e-03 3.22e-03 NE 601 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 E 653 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 E 670 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 E 706 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 E 741 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 E 784 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 E 794 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 E 843 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 E 989 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 E 1092 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 E 1104 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 E 1267 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 E 1278 0 9.90e-01 4.24e-01 2.79e-02 5.57e-03 E
Column # | Column Definition | |
---|---|---|
1 | Coordinate of TA site | |
2 | Observed Read Count | |
3 | Gamma for ES state | |
4 | Gamma for GD state | |
5 | Gamma for NE state | |
6 | Gamma for GA state | |
7 | State Classification (ES = Essential, GD = Growth Defect, NE = Non-Essential, GA = Growth-Defect) |
python tn-hmm.py -f example.wig -gff genome.gff3 > hmm_output_file.txt python process_genes.py -f hmm_output_file.txt > gene_calls_output.txtThe post-processing script will classify those genes containing statistically significant runs of ES states as essential, as described in the manuscript. If you wish to prevent this behavior, you can specify the "-nd" flag. In addition, you can specify that intergenic regions be included in the output by including the "-nc" flag.
python tn-hmm.py -f example.wig -gff genome.gff3 > hmm_output_file.txt python process_segments.py -f hmm_output_file.txt -s "ES" > segment_output.txt